
Scalable IP Lookups using Shape Graphs

Haoyu Song, Murali Kodialam, Fang Hao, T.V. Lakshman

Bell Labs, Alcatel-Lucent

{haoyusong, muralik, fangh, lakshman}@alcatel-lucent.com

Abstract—Recently, there has been much renewed interest
in developing compact data structures for packet processing
functions such as longest prefix-match for IP lookups. This has
been motivated by several factors: (1) The advent of 100Gbps
interfaces necessitating correspondingly fast packet processing
algorithms with a compact memory footprint; (2) network virtu-
alization leading to virtualization of physical router platforms
making it critical to reduce high-speed memory needs per
virtual router; (3) software routers built on multi-core processors
requiring the use of compact data-structures that fit in on-chip
caches for good performance.

In this paper, we revisit this issue of developing compact data
structures for key packet-processing functions. We develop a new
data structure, called the shape graph, that significantly compacts
the trie data-structure used for IP lookups. We accomplish this
by identifying considerable structural similarities in IP lookup
tries that have not previously been used in the literature for
scalable IP lookups. We use these similarities to store lookup
tries in a new graph data structure that has a significantly
lower memory-footprint. Using real IP forwarding tables, we
compare the memory usage of this new data structure to that
of multi-bit tries and of Bloom filters used for IP lookups. The
shape graph requires significantly less memory and allows the
far more effective use of on-chip memory. This effective use of
on-chip memory combined with multi-threading on a multi-core
processor makes shape-graph-based IP lookups well suited for
100Gbps lookups. The small footprint also makes it well suited
for use in router platforms that host a large number of virtual
routers.

I. INTRODUCTION

There has been renewed research interest in developing

memory-efficient data structures for high-speed packet pro-

cessing. This is due to several driving factors that necessitate

the use of low memory-footprint data structures. The expected

transition to 100G interfaces requires the use of memory-

efficient data structures, to achieve good performance while

minimizing high-speed memory costs. Furthermore, the need

to forward IPv6 packets and the growing forwarding table

sizes increase the importance of achieving high-efficiencies

in memory usage. Another important factor is the increasing

use of multi-core processors for packet forwarding. In these

systems, for achieving high-speeds, it is important to store

entire forwarding data structures in on-chip caches. This

necessitates the use of highly memory-efficient data structures.

Finally, the growing use of virtualization implies that the same

physical platform be able to act as multiple virtual routers.

If, for isolation, each of the virtual routers maintains its own

copy of forwarding data structures then memory-needs limit

the number of virtual routers that can concurrently be hosted

on a platform. To achieve good scaling in the number of

virtual routers, it is important to maximize the memory-usage-

efficiency of each virtual router. This makes it critical that

memory-efficient data structures be used.

For virtual routers, one option for reducing memory usage is

to use shared forwarding data structures with isolation being

achieved by other mechanisms [9]. Our focus in this paper

is on achieving high-memory efficiency for the case when

each router maintains its own forwarding data structures. In

particular, we focus on the problem of achieving significant

memory-usage reduction for the longest prefix-match opera-

tion needed for IP lookups to determine the next-hop. Fast

and efficient IP lookups has been well-studied and numerous

algorithms have been proposed. Nevertheless, we find that it

is possible to achieve significant reductions in memory usage.

We consider the trie data structure, which is a fundamental data

structure used for IP lookups. We find that there are significant

structural, or shape, similarities between different part of a

lookup trie. We exploit these similarities by using a new data

structure that we call shape graphs. The shape graph permits

operations similar to what can be done on trie but reduces

structural redundancy, allowing us to greatly improve upon the

memory-efficiency of tries. As with a multi-bit trie, a multi-

bit shape graph allows the lookup process to examine multiple

bits per memory access and boost the lookup throughput. The

shape graph, however, scales much better in memory-usage

with stride size than a multi-bit trie.

We also show that the shape-graph based method is more

memory-efficient than the fast Bloom-filter based algorithms

that have been recently proposed [7], [20]. With a multi-

threading implementation using multiple on-chip memory

blocks, the newly developed scheme can match the speed of

Bloom-filter based methods while using less memory.

II. SHAPE GRAPHS: EXPLOITING TRIE SIMILARITY

Binary tries are a natural data structure for performing

the longest prefix matches needed for IP lookups. The trie

data structure is used to store the set of prefixes over which

longest prefix matches must be done. For every valid prefix

the corresponding next-hop information is also stored. Several

variants of the binary trie, such as the multi-bit trie, have

also been proposed for improving throughput and memory

usage [6], [8], [18], [22], [23].

In recent work [21], we observed that at each level of a

binary prefix trie, the number of isomorphic sub-trees is much

smaller than the number of trie nodes. Consequently, if we

count the total number of isomorphic sub-trees in the entire

978-1-4244-4634-6/09/$25.00 ©2009 IEEE 73

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

trie, it must be significantly smaller than the trie size (i.e. the

total number of trie nodes).

We use an example to illustrate this point. Consider, as an

example, a routing table as shown in Table I. The correspond-

ing binary trie is shown in Figure 1. It contains eight nodes.

We say two trees are isomorphic if by switching a node’s

left and right child nodes, along with the sub-trees they are

rooted at, the two trees become identical. With this definition,

in Figure 1, the single-node sub-trees rooted at d, g, and h
are isomorphic because they are identical. Similarly, the sub-

trees rooted at b, e, and f are also isomorphic. Note that the

sub-tree rooted at e is isomorphic to the sub-tree rooted at f
because if node f ’s left child is switched to the right, then

the two sub-trees become identical. If we give each unique

isomorphic sub-tree a unique id starting from 1 (The id 0 is

intentionally reserved for a NULL shape) then, in Figure 1,

there are only four unique isomorphic sub-trees. These are

only 50% of the trie size.

TABLE I
SAMPLE PREFIX TABLE

prefix next hop

* P0

00* P1

11* P2

101* P3

110* P4

�

�

�

�

� �

� �

	

	 	

	

Fig. 1. The binary trie for the sample prefix table. The dark nodes stand for
the valid prefixes

The difference between the two is much more dramatic

when the tries are constructed from real IP prefix data. We

tested the difference on a binary trie constructed from a

snapshot of the BGP AS1221 prefix table. The table has more

than 210K IPv4 prefixes. The constructed binary trie has

576,534 nodes but has only only 48,762 unique isomorphic

trees. This is only 8% of the trie size. Similar comparisons on

many other prefix tables reveal the same dramatic differences

between the number of nodes in the trie and the number of

isomorphic sub-trees.

How can this observation, that the number of isomorphic

sub-trees in a prefix trie is much smaller than the trie size,

help us in reducing the memory consumption for IP lookups?

The answer lies in the transformation of the trie data structure

from a tree to a more compact graph where the compaction is

accomplished using structural similarities in the trie. Assume

the binary trie has n nodes and k isomorphic sub-tree groups.

We first label each binary trie node with the id of the

isomorphic sub-tree rooted at it. The resulting labeled trie,

for our example, is shown in Figure 2(a). Now, we construct a

directed graph with k vertices, where each vertex corresponds

to one of the isomorphic sub-trees in the original trie. Edges

between vertices are added in accordance with the relationship

of the corresponding isomorphic sub-trees in the original trie.

In our example, the trie node with label 4 has two child nodes

with labels 2 and 3. Hence, in the constructed graph, vertex 4

has two directed edges pointing to vertices 2 and 3 as shown

in Figure 2(b).

��

���

���

���

��� ���

��� ���

�

� �

��

�

� �

� �

�

��� � �

Fig. 2. Label the binary trie with isomorphic sub-tree ids and transform it
to a directed graph

The graph resulting from the trie transformation has some

interesting properties: (1) it has only one starting vertex which

maps to the original trie root, and it has only one terminating

vertex which maps to all the leaf trie nodes; (2) each vertex

can have multiple incoming edges but can have at most two

outgoing edges. Both these properties can be easily deduced

from the transformation process. In fact, the graph is simply

the result of condensing all the trie nodes with the same label

to one graph node and removing the redundant trie branches.

Since the graph consists of far fewer vertices and edges, it is

not a surprise that it uses far less memory than the trie that it

is based upon.

Unfortunately, this transformation results in too much loss

of information that is inherent in the trie and hence makes the

graph not yet practical for IP lookups. For example, one cannot

perform the reverse transformation to recover the original trie.

Neither can one walk the graph using a given IP address

(to perform lookups) since the directed graph edges lose the

notion of a ‘0’ branch and a ‘1’ branch that is inherent to

the binary trie. However, a little change to the transformation

process can easily solve these issues.

The change that we make to the transformation is that rather

than grouping isomorphic sub-trees we instead group only

identical sub-trees. The number of identical sub-tree groups

is likely to be greater than the number of isomorphic sub-tree

groups. However, note that as the number of identical sub-tree

groups is smaller than the original trie, we still get reductions

in memory usage compared to the trie. In the AS1221 prefix

table, the binary trie has 76,276 groups of identical sub-

trees, as opposed to 48,762 groups of isomorphic sub-trees.

Although the number of groups of identical sub-trees is 1.6

times larger than the number of groups of isomorphic sub-

trees, it is still 7.6 times smaller than the number of trie nodes,

74

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

which implies a significant reduction in memory usage.

We name each unique sub-tree as a shape. We now re-

label our example binary trie with the new shape id, as

shown in Figure 3(a). We then construct the corresponding

directed graph as shown in Figure 3(b). The graph contains

five vertices, mapping to the five unique shapes in the trie. We

term the graph constructed thus as a shape graph.

���

���

���

��	

�� ���

�� ���

�

� �

��

�

�
�

� �

� �

�

�

�

�

�

�

��� ���

Fig. 3. Label the binary trie with shape ids and build the corresponding
shape graph

The shape graph inherits all the properties of the graph

built using isomorphic sub-trees. In addition, it preserves extra

information from the trie allowing the graph to be used as a

compact alternative for IP lookups. In the shape graph, each

vertex (except for the terminating vertex) has exactly two

ordered outgoing edges these map to the 0 and 1 branches

of trie nodes. One can now recover the original trie from the

graph alone. Also, one can use an IP address as input to walk

the graph, and this walk will use the same number of steps to

reach the terminating vertex as walking in the original binary

trie to a leaf node would. This is easy to establish if we view

the shape graph as being built by condensing together all the

original trie nodes with the same label.

III. EFFICIENT IP LOOKUPS WITH SHAPE-GRAPHS

Next, we present our algorithm that uses the shape-graph

data structure for fast memory-efficient IP lookups.

A. Counting the shape and labeling the trie

We first need to formalize the procedure to identify the

shapes in a trie. We start with the following observation: Two

binary trees are identical if and only if their left sub-trees are

identical and their right sub-trees are also identical.

Since we label each node with the shape id of the sub-tree

rooted at it, we can derive a simple corollary from the above

observation:

Corollary 1: Two binary trees are identical if and only if

their left child nodes have the same label and their right child

nodes also have the same label.

In view of this corollary, we sketch the procedure to identify

the shapes and to label the binary trie. The process only needs

to do a post-order traversal of the trie (in one pass). For

example, the trie in Figure 1 is traversed in the order d-b-

g-e-h-f -c-a). All the leaf nodes are considered to be identical

sub-trees and are assigned shape id 1. Therefore, we label all

the leaf nodes with the number 1.

For all the other nodes, we examine the labels of their child

nodes. If one child node does not exist, we assume that the

non-existent child node bears a null shape id 0. Hence, for

each node, we get a pair of labels (e.g. In Figure 3(a), trie

node b gets a pair of labels {1, 0}). We use this pair of labels

as the key to query a hash table: if the key is not in the hash

table yet, we store the key along with the next unused shape

id r in the hash table and then label the current trie node with

number r; otherwise if the key is already in the hash table, we

retrieve the value associated with the key and use it to label

the current trie node. For our example, this process results the

labeled trie exactly as shown in Figure 3(a). Since we assign

the shape id consecutively, the label of the trie root tells us

exactly how many unique shapes are in the trie.

B. Constructing The Shape Graph

After the trie is labeled, it is straightforward to construct

the shape graph. We first allocate k vertices, where k equals

the label of the trie root. Then the trie is traversed again in

any order. For any visited node, if its label r has been seen

before, nothing needs to be done. If the label r has not been

seen yet, we retrieve the label of its ‘0’-branch child node,

s, and the label of its ‘1’-branch child node, t (note that the

corresponding label is 0 for a non-existent child node). In the

shape graph, we set a directed ‘0’-edge from vertex r to vertex

s and a directed ‘1’-edge from vertex r to vertex t. Note that

if s equals t, then the walk from vertex r always goes to the

same next vertex s, no matter what the input is.

To accelerate the process, we can terminate the trie traversal

as soon as all the k shape ids have been accessed. We observe

that most of the same shaped sub-trees are deep down in

the trie, so a breadth-first traversal order typically yields the

shortest processing times.

C. Leaf pushing

Now we can use the shape graph as a compressed form of

the trie and use if for IP lookups. However, there is another

issue that must be addressed. In the shape graph, it is possible

for a vertex to be reachable through multiple paths. Some

paths leading to a vertex may indicate valid prefixes while

others may not. For example, in Figure 3(b), vertex 2 actually

maps to paths “0*” and “11*”, in which “11*” is a valid prefix

but “0*” is not. Clearly, for IP lookup we need to differentiate

between these two cases of valid and invalid prefixes. How can

we do this differentiation? One can explicitly store the valid

prefix with the vertex for comparison, but this will increase

storage costs. Recall that one nice feature about the binary

trie is that any node can be reached through only one path, so

if a node is indicated as a valid prefix node, the unique path

leading to it implies the prefix. No extra information needs

to be stored by the trie node. This is a great advantageous to

achieving savings on memory needs.

We want to preserve this nice trie feature, of eliminating

ambiguities in prefix validity, in the shape graph as well. The

key to do this is based on observing that if there is only a

single vertex in the shape graph that indicates all the valid

75

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

prefixes, then if we reach this vertex, we know that we have

matched a valid prefix and the matched prefix is implied by

the walking path. This special vertex is the terminating vertex,

where all the paths converge. Since the terminating vertex

actually maps to all the leaf nodes in the original trie, to have

this feature in the shape graph, we require that only the leaf

trie nodes in the original trie can indicate valid prefixes. This

is achieved by applying a simple and widely used technique,

leaf pushing [23], on the binary trie before constructing the

shape graph.

Leaf pushing first grows the trie to a full tree (i.e. all the

non-leaf nodes have two child nodes) and then pushes all

the prefixes to the leaf nodes. For our example, the leaf-

pushing trie is shown in Figure 4(a) and the updated prefix

table after leaf pushing is shown in Table II. We can see

that leaf pushing has the negative effect of expanding the

prefix table size as well as the corresponding trie size. For

the previously considered AS1221 table, after leaf pushing,

the prefix table expands 1.7 times and the corresponding trie

also expands 1.3 times. However, on the positive side, leaf

pushing actually results in fewer shapes. Consequently, the

corresponding shape graph is smaller (e.g. the shape graph

in Figure 4(b) contains one less vertex than before). For the

AS1221 table, the shape graph after leaf pushing contains

51,962 vertices, a 32% reduction compared to the shape graph

before leaf pushing. The reason for this is that the leaf pushing

trie looks more regular and therefore results in more identical

sub-trees.

This size reduction of the shape graph helps offset the im-

pact of the prefix table expansion. Note that, leaf pushing and

another related technique (prefix expansion) have been widely

used in many high performance IP lookup algorithms [7], [9],

[23]. We will compare our scheme against these later.

TABLE II
EXPANDED PREFIX TABLE AFTER LEAF PUSHING

prefix next hop

00* P1

01* P0

100* P0

101* P3

110* P4

111* P2

���

���

���

��	

�� ���

��� ��

�

� �

��

�

�

���

��� ���

��

�

�

� 	

�

� �

�
�

�

�

��� ���

Fig. 4. Label the leaf-pushing trie with shape ids and build the shape graph

The most important consequence of leaf pushing is that (1)

only the terminating vertex maps to valid prefixes, (2) the

prefix is implied by the walking path in the shape graph,

and (3) each IP address used as input for walking the shape

graph can match only one prefix which is the longest match.

Therefore, all next-hop information can be stored in one hash

table associated with the terminating vertex.

Although, at this point, we have the needed memory-

efficient data structure for IP lookups, we describe some

further optimizations before presenting the actual lookup al-

gorithm.

D. Multi-bit Shape Graphs

Although the shape graph is smaller in size, the lookup

throughput using the shape graph obtained from a binary trie

is no better than using the binary trie. When tries are used

for IP lookups, one generally resorts to using a multi-bit trie

for improved throughput [8], [22], [23]. A multi-bit trie with

a stride of s can boost the throughput roughly by a factor of

s. A multi-bit trie can also reduce the total number of trie

nodes. However, the overall memory consumption increases

rapidly as the stride size increases because the node size

grows exponentially with the stride size. This increase in node

size significantly outpaces the reduction in the number of trie

nodes. Because of this, the stride cannot be set to be too large.

The multi-bit trie with a stride of two for our example prefix

table is shown in Figure 5.

�

�

�

�

� �

� �

�

� �

��

�

�
 !
 "
 "
 #

 !
 !
 !
 !

 "
 "
 $
 $

 %
 %
 #
 #

&�' &�'

Fig. 5. Multi-bit trie and the data structure with the stride of 2

We can construct the multi-bit shape graph in a manner

similar to the construction of binary shape graph. The multi-bit

shape graph is derived from the binary shape graph. Initially,

the new multi-bit graph contains only one starting vertex. With

a stride of size s, we walk the original shape graph using each

of the 2s s-bit patterns from the starting vertex. We add all

the finally reached vertices in the new graph, if they are not

already in it. The vertices are connected with edges, with each

representing a stride for a different s-bit pattern. We repeat the

previous step for each of the newly added vertices The process

terminates when no vertex can reach other vertices other than

the terminating vertex.

Figure 6(b) and 6(c) show a 2-bit shape graph and 3-bit

shape graph respectively, for our example prefix table. From

the figures, we can see that with the stride increasing, the graph

size shrinks. At the same time, the edges out of each vertex

increases. However, our evaluation (see Section V) shows that

the overall memory consumption increases at a much slower

76

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

pace than for the multi-bit trie. Hence the multi-bit shape graph

is more scalable.

�

� �

�

� �

�
�

�

�

�

� �

��
�� ��

��

��
��
��
��

�

�

��
�
��
	
�	
�
�	
	

	
��
	
�	
		
�
		
	

��
�
��

Fig. 6. Multi-bit shape graph with stride of 1, 2, and 3

E. Avoiding prefix expansion

Now we tackle another issue related to memory consump-

tion. As we can see in Figure 5, multi-bit trie requires prefix

expansion in each node. All the prefixes are expanded to the

closest length l, where l is a multiple of stride s. This is

another source leading to the memory inefficiency. The multi-

bit shape graph faces the similar problem. For example, in the

3-bit shape graph shown in Figure 6(c), the edges “000” and

“001” are actually from just one original prefix “00*”. But

the terminating vertex cannot tell this information so we have

to split the original prefix “00*” into two individual prefixes

“000” and “001”. With a small stride, such prefix expansion

is still tolerable. But when the stride is large, the expanded

prefix table would become quite large. Such expansion is

especially problematic for the shape graph, because unlike the

multi-bit trie where the next hop can be embedded into each

trie node, the shape graph uses a hash table to store all the

{prefix ,nexthop} pairs.

We propose a simple technique to avoid prefix expansion,

although this will slightly increase the size of each graph

vertex. Since each vertex (except the terminating vertex) has 2s

outgoing edges, we maintain a 2s-bit bitmap in each vertex to

indicate which group of edges are for the same original prefix,

if they lead to the terminating vertex. This is possible because

a prefix always expands to a set of prefixes with consecutive

values. We can use this bitmap to infer the actual length of

the prefix so as to avoid prefix expansion.

If the prefix length is l, the last walk step contains only

r = l mod s bits, which will expand to 2s−r consecutive

edges. The process of setting the bitmap for a vertex is as

follows: we use a temporary binary flag which can be either 0

and 1. The flag is initialized to 0. Starting from the first edge,

if the next t edges lead to the terminating vertex and they

belong to the same original prefix, we set the corresponding

t bits in the bitmap to the current value of the flag. We then

flip the flag after setting t bits. Then we look at the next

edges and continue the process. If an edge does not lead to

the terminating vertex, we set the corresponding bit in the

bitmap to the current value of the flag, and flip the flag. The

process stops when all the edges have been scanned and all

the bits in the bitmap have been set. As a result, the generated

bitmap contains consecutive 0’s and 1’s. A string of two or

more same-value bits implies the corresponding edges belong

to the same prefix. For example, in Figure 6(c), the bitmap

in vertex 4 should be “00110101”. The first two bits “00”

correspond to prefix 00∗; the next two bits “11” correspond

to prefix 01∗, and so on.

For the lookup process, this bitmap is used only if the

next vertex is the terminating vertex; otherwise it is ignored.

Suppose when we look up a prefix in the graph, we have

traversed k steps and find the next edge leads to the terminating

vertex. If the corresponding bit for this edge belongs to a string

of t (1 ≤ t ≤ 2s−1) consecutive 1s (or 0s) in the bitmap, then

the prefix length can be calculated as s(k +1)− log2 t. In the

above example, suppose we look up an address “010”. Starting

at vertex 4, we find this corresponds to the third outgoing edge,

which leads to the terminating vertex 1. We then find the third

bit in the bitmap of vertex 4 is “1”, which belongs to a string

of two consecutive 1s. From the above equation, the prefix

length is 3 × (0 + 1) − log2 2 = 2 and therefore the best

matching prefix is 01∗.

The relatively insignificant overhead of 2s-bit per vertex

makes it possible to use large stride to increase lookup

throughput without major increase in memory.

F. Performing IP Lookups

The IP lookup process should be fairly straightforward at

this point. We use the given IP address as input to walk

the graph, in the way similar to walking a trie. In the last

step before entering the terminating vertex, we use the vertex

bitmap plus the walk steps to calculate the length of the best

matching prefix, as explained in the previous section. Finally,

when we reach the terminating vertex, we use the matching

prefix as key to retrieve the next hop information from a hash

table.

G. Incremental update

IP forwarding table may be frequently changed over the time

due to temporal route fluctuation. Therefore it is necessary for

a successful IP lookup algorithm to support fast incremental

updates. We simply cannot afford to rebuild and reload the

entire data structure for each update.

Incremental updates include change of next hop and IP

prefix insertions and deletions. Change of next hop is relatively

easy since we just need to modify the hash table entry for the

corresponding prefix.

To handle prefix insertions and deletions, the route pro-

cessing software works on the leaf-pushing trie first and then

modifies the shape graph and the hash table if necessary. A

prefix deletion can be done without actually removing any trie

node, hence the shape graph can remain intact and we only

need to update the next-hop associated with the deleted prefix

in the hash table. For example, if {110∗, P4} is deleted in

Table I, we only need to update the next hop of prefix “110*”

to P2 in the hash table. Such “lazy” deletion can simplify the

operation and save memory accesses. It may also benefit later

insertions. For example, when a prefix is frequently deleted

and inserted during route fluctuation, we only need to modify

77

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

the hash table without touching the shape graph for both

operations.

The prefix insertion is a bit more complicated. In the

following discussion, we first use binary shape graph as an

example. If insertion of a new prefix does not create any

new node in the trie, the shape graph will not change, and

hence only the hash table needs to be updated. However,

when the insertion creates some new nodes in the trie, the

shape graph needs to be updated accordingly in addition to

hash table updates. The number of memory accesses for the

update is upper-bounded by the trie depth. This is because the

newly added prefix can only alter the shapes of all its ancestor

nodes in the trie. If a node’s shape id is altered to another

existing shape id, no further modification to the shape graph

is necessary because the connectivity between vertices for the

existing shapes has already been set up. On the other hand, if

a node’s shape is altered to a new shape, we need to update

the node with a new shape id. At the same time, we generate

a new vertex in the shape graph and add two outgoing edges

from the new vertex to the two vertices representing its two

child shapes. We repeat this process bottom up till we reach

the trie root. If the trie root’s shape id is new, we generate a

new vertex having this shape id in the shape graph and make

it the new starting vertex.

The prefix insertion and deletion can yield some vertices

unused. The unused vertices should be recycled regularly (i.e.

remove the unused vertices from the memory and reuse the

corresponding shape ids for new shapes) to avoid exhausting

the memory if otherwise unattended. This can be easily

achieved in the processing software by tracking the usage of

each shape id.

Figure 7 shows what happens when new prefix “001*”,

“1100*”, and “1111*” are inserted one by one into shape graph

in Figure 4. Both the resulting trie and the corresponding shape

graph are shown in the figure. After prefix “001*” is inserted,

the old starting vertex 4 becomes redundant because it is not

used by any lookup. However, we do not need to remove it

from the graph immediately because later on it may be used

again. As shown in Figure 7, after prefix “1111*” is inserted,

vertex 4 is reused as an internal vertex.

For a multi-bit shape graph, one incremental update requires

at most �d+1

s
� memory accesses, where d is the binary trie

depth and s is the stride.

Note that the actual memory operation for the shape graph

updates is just memory write. When an update involves a

series of memory writes, we do not activate the new starting

vertex until all the memory writes are done. During this period,

there is no need to block the normal lookups. They still start

from the old starting vertex until the update is finished. When

these write requests are interwoven with the normal memory

accesses in the same pipeline, the update does not affect the

lookup correctness. The infrequent update also has little impact

to the lookup throughput. For instance, each update to a shape

graph with a stride of 6 needs at most 6 memory writes.

If there is an update every 1ms, there will be 6K memory

writes per second, which consumes only 0.003% bandwidth

�
�

�
�

�
�

�

� �

� �

�

� �

��

�

�

�

� �

��

�

�

� �

�

�	

�

��

�

�

�

�

�

�
�

�

�

�
�

�

�

�
�

� �
�

� �
�

�

� �

��

�

�

�

� �

��

�

�

�

�

�

�

�

�

�

� �

�

�

��

�

�

��

�

�

��

�

�

��

�
�

�

�

�
�

� �

� �

�

� �

��

�

�

�

� �
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

!" #
$

%&

' (

)

*+

,

$

-
.

/

0
1

Fig. 7. Illustration of the shape graph updates as the new prefixes “001*”,
“1100*”, and “1111*” are inserted sequentially. Left side is the updated leaf-
pushing binary trie and the right side is the updated shape graph. The dark
nodes (vertices) indicate the newly inserted or updated nodes (vertices). The
dashed vertices and edges in the shape graph indicate the unused vertices and
edges after the update

of a moderate 200MHz memory.

IV. IMPLEMENTATION CONSIDERATIONS

A. Fast shape graph lookup

The memory consumed by the shape graph is small enough

to fit in the on-chip block memory in today’s ASICs, FPGAs,

and Network Processors. This allows us to deploy multiple

memory blocks and spread the graph vertices into them to

improve the lookup throughput. This level of parallelism is

similar to that of the super-scalar pipeline architecture. Multi-

ple packets are dispatched to conduct lookups simultaneously.

Each memory access retrieves a pointer giving the block id

and block offset for the next access. This process repeats until

the terminating vertex is reached. The matching prefix is then

derived and used to search the off-chip hash table and get the

next-hop.

Such an architecture is illustrated in Figure 8. The use of

multiple memory blocks significantly increases the aggregated

bandwidth. Since each packet may need a different number of

memory accesses to finish the lookup, the final lookup results

may appear out of order. We arrange a reordering buffer at the

output side so that the lookup results output in the order that

the packets are fed into the search engine.

Ideally, each memory block should roughly contain the

same number of vertices so the memory block size can be

78

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

�

�

������
	
�������

��� �����
������ �
�������
��

����� ������

Fig. 8. Distribute graph vertices into multiple memory blocks to improve
the lookup throughput. s is the starting vertex and t is the terminating vertex

equalized for easier engineering and better memory efficiency.

In addition, the vertices should be spread across different

memory blocks in a way that the lookup accesses to each

memory block is equalized in order to maximize throughput,

or minimize the number of outstanding packets that are needed

to fill up the bandwidth. This problem is similar to the classical

bin packing problem where one tries to pack a set of variable

sized items into the minimum number of fixed capacity bins.

The difference is that in our problem we have a fixed number

of bins (i.e. memory blocks) with unlimited capacity and we

need to satisfy the packing goals as discussed above.

We assume each graph vertex is associated with a weight

which indicates the probability for it to be accessed by a prefix

lookup. We use the min-max heuristic [14] to assign each

vertex to one of the k memory blocks: we sort the vertices

in decreasing weight order and then assign each vertex in the

current least weighted memory block according to the weight

order; we repeat the process until all vertices are assigned.

Note that we leave out the termination and starting prefixes due

to the following reasons. We actually never need to access the

terminating vertex. The matching prefix can be determined at

the vertex one step before the terminating vertex. The starting

vertex is the most weighted vertices which are accessed by

every packet lookup. However, it can be handled in the control

logic rather than in the memory to save the memory bandwidth

consumption.

We can assign the weight to the vertices in one of two

ways. In the static method, we assume each prefix in the table

is accessed with the same frequency. The weight of all the

vertices is initialized to 0. Then for each prefix, we increment

the weight of the accessed vertices on the prefix walk path by

one. As a result, a vertex with weight w means there are w
prefixes passing through it.

In practice, the above assumption is not always true. Prefix

access can be fairly imbalanced. It is possible that majority

of the lookups are concentrated on a small subset of prefixes.

The dynamic method therefore keeps track the access rate of

each vertex and update their weight accordingly. When a better

vertex distribution is preferred, we run the algorithm and escort

the affected vertices to their new host memory blocks. The

dynamic method can help balance the accesses to the memory

blocks to the full extent.

The max-min heuristic works extremely well for shape

graph with static assigned weight. For the AS1221 prefix table,

assuming 4 or 8 memory blocks are used, the maximum

deviation of the overall weight in any memory block is less

than 10 from the average (reflecting the bandwidth balance)

and the maximum deviation of the number of vertices in

any memory block is at most a few tens from the average

(reflecting the memory size balance), which are negligibly

small.

In theory, with the perfect vertex distribution, �d+1

s
� − 2

memory blocks are enough to support finishing a lookup in

just one clock cycle in the worst case, where d is the length

of the longest prefix (e.g. 32 in the case of IPv4) and s is

the stride. The deduction of 2 in the equation is because both

starting and terminating vertex are not actually stored in the

memory.

This means four memory blocks are sufficient for stride size

of six. However, to tolerate the temporal access imbalance, we

can use more memory blocks. Note that this will not increase

the memory consumptions, since each memory block will hold

fewer vertices proportionally.

B. Efficient hash table construction

Performance of the hash table has direct impact on both

storage and lookup throughput. There are many ways to

implement the hash table efficiently with compact storage and

low collision probability [15], [19]. In this paper we use a

simple yet efficient multiple hashing scheme proposed in [3].

In this scheme, there are k independent hash functions and

each table bucket has n slots to hold up to n {prefix ,nexthop}
pairs. Each prefix is hashed k times into k candidate buckets,

but it is only stored in the lightest loaded one. Consequently, a

prefix lookup needs to access the hash table k times using the

k hash functions. All prefixes stored in the k accessed buckets

need to be compared to find the match. By using multi-port

memory or multiple parallel memory modules, such memory

accesses can also be parallelized.

With the fine tuned parameters, the hash table is actually

quite compact and has extremely low overflow rate. In the

rare case that a prefix cannot find an empty slot to store in

the selected buckets, it is treated as an exception and stored

in a very small on-chip TCAMs. This is a common technique

used by many hashing-based algorithms [7], [20].

For example, for the AS1221 table after leaf pushing, we

can use a hash table with the number of buckets as half of

the number of prefixes and set k = 4 and n = 3. There

are typically less than 10 overflow prefixes for many different

trials each with different hash functions. If we assume each

{prefix ,next hop} pair uses five bytes (4-byte prefix plus 1-

byte next hop), then on the average a prefix consumes 60-bit

memory. The total memory consumed by the hash table is

therefore 21.5Mb.

Some recent proposals build efficient Bloom filter based

data structure that can directly return the id of the group that

79

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

an element belongs to [4], [5], [10], [16]. Instead of hash

table, we can also combine the shape graph approach with

such Bloom filter data structures for IP prefix lookup. Given an

IP address, the shape graph lookup returns the best matching

prefix. We can group and store the prefixes according to their

next-hop output port such that the lookup will directly return

us the output port id. Although this kind of data structure has

the potential to significantly reduce the memory consumption,

in this paper we still use the aforementioned hash table as the

basis for conservative performance evaluation.

V. PERFORMANCE EVALUATION

For the performance evaluation, we choose two representa-

tive real-world prefix tables: a large table AS1221 that contains

215,454 prefixes, and a small table Maewest that contains

27,930 prefixes. Both numbers are before leaf pushing.

A. Comparison with multi-bit trie algorithm

We first compare the shape graph algorithm with the multi-

bit trie algorithm. As shown in Figure 9, the shape graph

contains significantly fewer number of nodes than the multi-bit

trie for all different strides.

0

100,000

200,000

300,000

400,000

500,000

600,000

1 2 3 4 5 6 7 8
Stride

o

f
N

o
d

es
 o

r
V

er
ti

ce
s

Shape Graph
Multi-bit Trie

0

20,000

40,000

60,000

80,000

100,000

120,000

1 2 3 4 5 6 7 8
Stride

Fig. 9. Number of trie nodes versus number of graph vertices. The left side
is for AS1221 and the right side is for Maewest

One can argue that the multi-bit trie does not need an extra

hash table so a fair comparison should consider the overall

memory consumption instead. Moreover, some algorithms

such as Lulea [6] and Tree Bitmap [8] encodes the multi-

bit trie cleverly so the memory consumption is significantly

reduced. To see where our algorithm stands, the comparison

of the multi-bit trie algorithm, the Tree Bitmap algorithm,

and ours is as follows. We assume the next-hop information

consumes 8 bits and each pointer consumes �log2 m� bits,

where m is the number of nodes in the trie or vertices in

the graph. So with the stride of s, the memory consumed

by the multi-bit trie algorithm is m2s(8 + �log2 m�) and

the memory consumed by the Tree Bitmap algorithm is

m(2s + 2s − 1 + �log2 m� + �log2 n�) + 8n. Likewise, the

shape graph algorithm consumes m2s(1+�log2 m�)+8n′ bits.

The extra 2s bit in the above formulation is for the bitmap

as discussed in Section III-E. We assume a perfect hashing

implementation. n′ is the number of prefixes after leaf pushing.

To compare the scalability of the algorithms, we normalize

the memory consumption as the average number of bits

consumed by each original prefix. The comparison of the three

algorithms on the two prefix tables are shown in Figure 10.

The shape graph algorithm shows clear advantage for both

cases. Although the Tree Bitmap algorithm closely tracks the

memory efficiency of the shape graph algorithm, it suffers

from significant incremental update cost [8]. Finally, we note

that the memory consumption is not monotonically increasing

with the stride. This is because sometimes the increasing of the

stride can significanlty reduce the number of trie nodes. Even

the trie node size increases, the overall memory consumption

still appears decreasing at these settings.

0

100

200

300

400

500

1 2 3 4 5 6 7 8
Stride

M
em

o
ry

 C
o

n
su

m
p

ti
o

n

(B
it

s/
P

re
fi

x)

Shape Graph

Multi-bit Trie

Tree Bitmap

0

100

200

300

400

500

1 2 3 4 5 6 7 8
Stride

M
em

o
ry

 C
o

n
su

m
p

ti
o

n

(B
it

s/
P

re
fi

x)

Fig. 10. Overall memory consumption comparison on two prefix tables. The
left side is for AS1221 and the right side is for Maewest

B. Comparison with Bloom filter based algorithm

We also compare our algorithm with the Bloom filter based

IP lookup algorithm proposed in [7]. Since both algorithms

use a hash table for the next hop lookup, we assume they use

the same hash table implementation and hence consume the

same amount of memory. Therefore we focus on comparison

of the memory sizes of the shape graph and the Bloom filter.

According to the Bloom filter theory, if we want to keep

the false positive rate below 1 × 10−5, an item will consume

at least 24 bits in the best case [2]. Therefore 5-Mb SRAM

bits are needed to construct the Bloom Filter for the AS1221

table,

On the other hand, the shape graph for AS1221 consumes

less than 16-bits per prefix for a stride up to 5. Furthermore,

if we allocate more memory blocks for the shape graph as

proposed in IV-A, the total memory consumption will not

change, but the aggregate throughput will become as good

as or even better than the Bloom filter based algorithm.

Figure 11 shows more results for the AS1221 table. With

eight bits per prefix allocated, the Bloom filter based algorithm

exhibits a poor false positive rate (> 2%), while the shape

graph can still support a stride of 2. More importantly, shape

graph can reach very high throughput even for small stride as

long as enough memory blocks can be used.

In the Bloom filter based algorithm, to avoid using too many

Bloom filters, prefix expansion is often applied to reduce the

number of unique prefix lengths [7]. While this can reduce the

number of memory blocks, each memory block must increases

its size to handle more expanded prefixes. Also note that shape

graph algorithm always give accurate results, while the false

positive generated by the Bloom filter can negatively impact

the throughput performance.

The Bloom filter based algorithm also relies on multi-port

memory blocks to achieve the desired throughput. This is

80

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 4 8 12 16 20 24 28 32
of memory bits / prefix

B
F

 fa
ls

e
po

si
tiv

e
ra

te

1

2

3

4

5

S
ha

pe
 G

ra
ph

 s
tr

id
e

Fig. 11. On-chip memory consumption for different Bloom filter false
positive rates and different shape graph strides. the memory consumption is
normalized to bits per prefix.

because each Bloom filter contains multiple hash functions

and all of them need to access the memory. However, majority

devices provide embedded memory blocks with at most two

ports. While it is possible to use dual-port memory blocks to

construct the Bloom filters, it can significantly complicate the

circuit design [7]. On the contrary, in our algorithm implemen-

tation, each packet needs only to access each memory block

one time or less on the average. So the single port memory

is sufficient and the dual-port memory can effectively double

the lookup throughput.

In the following evaluation, we assume both algorithms use

k memory blocks. For the shape graph algorithm, we use

the equation k = �d+1

s
� − 2 to determine the stride s, so

the algorithm can finish one shape graph lookup per clock

cycle in the best case. For the Bloom filter based algorithm,

k memory blocks can support k Bloom filters to handle k
different prefix lengths. The prefixes with lengths that are not

covered by the Bloom filters need to be expanded to multiple

longer prefixes. We assume each of the covered length is

equal to some multiple of �d/k� (e.g. given k = 8, the set

of supported prefix lengths is 4, 8, 12, 16, 20, 24, 28, and

32). Figure 12 shows the memory consumption normalized as

bits per original prefix for both algorithms. Performance of the

Bloom filter based algorithm are shown in two different false

positive settings. We observe that the memory consumption of

our algorithm is roughly equal to the that of the Bloom filter

based algorithm under the false positive rate of 0.001. The

expanded prefix table also needs a larger off-chip hash table.

Since our algorithm avoids the prefix expansion, it does not

incur such extra overhead.

0

40

80

120

160

200

4 8 12 16 20 24 28 32
memory blocks

bi

ts
 /

or
ig

in
al

 p
re

fix

0

50

100

150

200

250

4 8 12 16 20 24 28 32
memory blocks

Shape Graph
BF, fp = 1e-5
BF, fp = 1e-3

Fig. 12. Memory consumption for different number of memory blocks. The
left side is for the AS1221 table and the right side is for the Maewest table.

It is possible to further optimize the set of prefix length

thresholds by using controlled prefix expansion [23]. But

regardless of which prefix lengths to use, the prefix table is still

significantly expanded. As we show earlier, a prefix consumes

24 bits to achieve the 1e − 5 false positive rate even without

any prefix expansion. Our algorithm consistently uses smaller

memory when more than eight memory blocks are available.

C. Experiments on IPv6 tables

It is a little difficult to evaluate the algorithm for IPv6 since

there are no large real-world IPv6 forwarding tables available

today. We first use a real IPv6 BGP table that contains about

900 prefixes. Prefix length in this table ranges from 16 to 64.

We also synthesize a large IPv6 forwarding table using

the methodology developed in [25]. The authors observe that

while it is difficult to predict the structure of future large scale

IPv6 forwarding lookup tables, it is possible to use the IPv6

address allocation schemes and the characteristics of current

IPv4 tables to infer information that can be used to generate

realistic IPv6 tables. In our experiment, we generate an IPv6

table based on the AS1221 IPv4 table. The table contains

215,518 prefixes.

The comparison between the shape graph and the multi-bit

trie is shown in Figure 13. We can see that the trie for IPv6

contains many more nodes than that for IPv4 with the same

number of prefixes. Therefore, the data structure scalability

is more critical for the IPv6 case. We observe that the shape

graph is much smaller and scales better than the multi-bit trie

for all the strides.

0

1,000

2,000

3,000

4,000

5,000

1 2 3 4 5 6 7 8
Stride

o

f
N

o
d

es
 o

r
V

er
ti

ce
s

Shape Graph

Multi-bit Trie

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

1 2 3 4 5 6
Stride

Fig. 13. The number of shape graph vertices vs. the number of multi-bit
trie nodes for IPv6 forwarding tables. The left side is for the IPv6 BGP table
and the right side is for the synthesized IPv6 table

IPv6 poses extra challenges to the Bloom filter based

algorithm due to the large number of unique prefix lengths.

Limiting the number of Bloom filters would cause a much

larger prefix expansion factor. Hence the shape graph algo-

rithm outperforms the Bloom filter based algorithm even more

significantly in IPv6 compared to IPv4.

D. Throughput analysis

100GbE is being standardized and the router with 100GbE

line cards needs to process 150 million packets per second

per port in the worst case. The current FPGAs, ASICs, and

memory components can comfortably work at 300MHz, which

means at least two clock cycles are available to finish one

forwarding lookup decision. The architecture proposed in

Section IV can easily sustain such throughput and has the

potential for even higher line speed.

81

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

VI. RELATED WORK

IP route lookup is a well-studied problem. Although TCAM

is handy and guarantees the high throughput for IP lookups, it

suffers from the excessive power consumption, high cost, and

low density. Therefore, the algorithmic solutions are still very

popular alternatives.

High performance algorithms are often implemented in

hardware as dedicated search engines involving control com-

ponents and memory components. The most popular IP lookup

algorithms are trie-based [6], [8], [18], [22], [23]. While

each generation of the trie-based algorithm becomes more

memory efficient and allows faster lookups, the performance

still decreases linearly as the tree depth increases, making

these algorithms less suitable for the emerging IPv6 lookups.

Another approach for fast IP lookups is to use memory

pipelines [1], [11]–[13]. A deep pipeline can be used to

produce one lookup result every clock cycle. However, the

high aggregated memory bandwidth needed by all the pipeline

stages prohibits it to be implemented with commodity mem-

ory devices. Using dedicated lookup engine with embedded

memory for the pipeline stages requires the data structure to

be small since the on-chip memory is still costly.

Hashing is also used for IP lookups [17], [24]. The al-

gorithm described in [7] utilizes the on-chip memory blocks

to construct multiple Bloom filters to parallelize the hashing

process, therefore the lookup throughput is greatly enhanced.

Our comparison shows that our algorithm is superior to it in

terms of memory efficiency.

Virtual routers call for better data structure scalability to the

algorithm design. [9] describes a simple scheme to insert all

the prefixes belonging to different virtual routers into one trie.

Orthogonal to this approach, our algorithm seeks to compress

the lookup data structure of a single virtual router so the

overall router scalability can be fulfilled.

VII. CONCLUSION

Technology advancement such as faster line cards, network

virtualization, and software routers have generated renewed

interest in developing compact data structures for packet

processing. IP lookup algorithms need to support the line-

speed forwarding without incurring high system cost and

power consumption. For example, 100GbE line card requires

the search engine to finish 150 million packet lookups per

second. Few algorithms can reach such high throughput so

far. We believe in order to meet such demands, an algorithm

need to be optimized at the architectural level which com-

bines multiple components and takes fully advantages of the

hardware parallelism that the system offers.

In this paper, we have exploited one of the intrinsic charac-

teristics of the IP forwarding table to build a very compact

lookup data structure that scales to very large forwarding

tables. When implemented properly using multiple parallel

memory blocks, the algorithm can sustains extremely high

lookup throughput. We show through real world IP forward-

ing tables that our algorithm outperforms both the multi-bit

trie algorithm and the Bloom filter based algorithm in both

memory size and lookup throughput. The algorithm can be

implemented in FPGAs and ASICs, as well as the multi-core

processors. For IP lookups on the BGP table with more than

200K prefixes, with a memory consumption as low as about

100 bits per prefix (including on-chip and off-chip memory),

the algorithm can support line-speed lookup for the 100Gbps

line speed.

Our future work includes implementing the algorithm in

hardware and evaluating its performance using real Internet

traffic.

REFERENCES

[1] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A Tree Based
Router Search Engine Architecture with Single Port. In ISCA, 2005.

[2] B. Bloom. Space/Time Trade-offs in Hash Coding With Allowable
Errors. Communications of the ACM, July 1970.

[3] A. Broder and M. Mitzenmacher. Using Multiple Hash Functions to
Improve IP Lookups. In IEEE INFOCOM, 2001.

[4] F. Chang, K. Li, and W. chang Feng. Approximate caches for packet
classification. In IEEE INFOCOM, 2004.

[5] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: an
efficient data structure for static support lookup tables. In ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2004.
[6] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small Forwarding

Tables for Fast Routing Lookups. In ACM SIGCOMM, 1997.
[7] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor. Longest Prefix

Matching using Bloom Filters. In ACM SIGCOMM, 2003.
[8] W. Eatherton, G. Varghese, and Z. Dittia. Tree Bitmap: hard-

ware/software IP Lookups with Incremental Updates. ACM SIGCOMM

Computer Communication Review, 2004.
[9] J. Fu and J. Rexford. Efficient IP Address Lookup with a Shared

Forwarding Table for Multiple Virtual Routers. In ACM CoNEXT, 2008.
[10] F. Hao, M. Kodialam, T. V. Lakshman, and H. Song. Fast Multiset

Membership Testing Using Combinatorial Bloom Filters. In IEEE

INFOCOM, 2009.
[11] J. Hasan and T. N. Vijaykumar. Dynamic Pipelining: Making IP Lookup

Truly Scalable. In ACM SIGCOMM, 2005.
[12] W. Jiang and V. K. Prasanna. Beyond TCAMs: An SRAM-based Multi-

Pipeline Architecture for Terabit IP Lookup. In IEEE INFOCOM, 2008.
[13] S. Kumar, M. Becchi, P. Crowley, and J. S. Turner. CAMP: Fast and

Efficient IP Lookup Architecture. In ACM/IEEE ANCS, 2006.
[14] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algo-

rithms to Accelerate Multiple Regular Expressions Matching for Deep
Packet Inspection. In ACM SIGCOMM, 2006.

[15] S. Kumar, J. Turner, and P. Crowley. Peacock Hash: Fast and Updatable
Hashing for High Performance Packet Processing Algorithms. In IEEE

INFOCOM, 2008.
[16] Y. Lu, B. Prabhakar, and F. Bonomi. Bloom filters: Design innovations

and novel applications. Allerton Conference, 2005.
[17] J. V. Lunteren. Searching Very Large Routing Tables in Wide Embedded

Memory. In IEEE Globecom, 2001.
[18] S. Nilsson and G. Karlsson. IP Address Lookup using LC-Tries. IEEE

Journal on Selected Areas in Communications, June 1999.
[19] H. Song, S. Dharmapurikar, J. S. Turner, and J. W. Lockwood. Fast

Hash Table Lookup Using Extended Bloom Filter: an Aid to Network
Processing. In ACM SIGCOMM, 2005.

[20] H. Song, F. Hao, M. Kodialam, and T. Lakshman. IPv6 Lookups using
Distributed and Load Balanced Bloom Filters for 100Gbps Core Router
Line Cards. In IEEE INFOCOM, 2009.

[21] H. Song, M. Kodialam, F. Hao, and T. Lakshman. Building Scalable
Virtual Routers with Trie Braiding. In unpublished manuscript, 2009.

[22] H. Song, J. Turner, and J. Lockwood. Shape Shifting Tries for Faster
IP Lookup. In IEEE ICNP, 2005.

[23] V. Srinivasan and G. Varghese. Faster IP Lookups Using Controlled
Prefix Expansion. In ACM SIGMETRICS, 1998.

[24] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High
Speed IP Routing Lookups. In ACM SIGCOMM, 1997.

[25] M. Wang, S. Deering, T. Hain, and L. Dunn. Non-random Generator
for IPv6 Tables. 12th IEEE HotInterconnects, 2004.

82

Authorized licensed use limited to: National Cheng Kung University. Downloaded on December 15, 2009 at 03:18 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

